Natural and artificial photosynthesis : solar power as an energy source / editor, Reza Razeghifard.
2013
TJ811.8
Formats
Format | |
---|---|
BibTeX | |
MARCXML | |
TextMARC | |
MARC | |
DublinCore | |
EndNote | |
NLM | |
RefWorks | |
RIS |
Linked e-resources
Details
Title
Natural and artificial photosynthesis : solar power as an energy source / editor, Reza Razeghifard.
ISBN
9781118659755 (epub)
1118659759 (epub)
9781118659847 (pdf)
1118659848 (pdf)
9781118659830 (mobi)
111865983X (mobi)
1118659899 (electronic bk.)
9781118659892 (electronic bk.)
1118160061 (cloth)
9781118160060 (cloth)
9781299939400
1299939406
9781118160060 (cloth)
1118659759 (epub)
9781118659847 (pdf)
1118659848 (pdf)
9781118659830 (mobi)
111865983X (mobi)
1118659899 (electronic bk.)
9781118659892 (electronic bk.)
1118160061 (cloth)
9781118160060 (cloth)
9781299939400
1299939406
9781118160060 (cloth)
Published
Hoboken, New Jersey : John Wiley and Sons, Inc., [2013]
Copyright
©2013
Language
English
Description
1 online resource
Call Number
TJ811.8
Distributor No.
EB00064051 Recorded Books
System Control No.
(OCoLC)833631171
Summary
This technical book explores current and future applications of solar power as an unlimited source of energy that earth receives every day. Photosynthetic organisms have learned to utilize this abundant source of energy by converting it into high-energy biochemical compounds. Inspired by the efficient conversion of solar energy into an electron flow, attempts have been made to construct artificial photosynthetic systems capable of establishing a charge separation state for generating electricity or driving chemical reactions. Another important aspect of photosynthesis is the CO2 fixation and the production of high energy compounds. Photosynthesis can produce biomass using solar energy while reducing the CO2 level in air. Biomass can be converted into biofuels such as biodiesel and bioethanol. Under certain conditions, photosynthetic organisms can also produce hydrogen gas which is one of the cleanest sources of energy.
Bibliography, etc. Note
Includes bibliographical references and index.
Formatted Contents Note
Machine generated contents note: 1.1. Introduction / Diego Castano
1.2. Sun / Diego Castano
1.3. Light / Diego Castano
1.4. Thermodynamics / Diego Castano
1.5. Photovoltaics / Diego Castano
1.6. Photosynthesis / Diego Castano
References / Diego Castano
2.1. Introduction / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.1.1. Importance of Photosynthesis: Why Study Photosynthesis? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.1.2. Oxygenic Versus Anoxygenic Photosynthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.1.3. What Can We Learn from Natural Photosynthesis to Achieve Artificial Photosynthesis? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.1.4. Atomic Level Structures of Photosynthetic Systems / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.1.5. Scope of the Chapter / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.2. Path of Energy: From Photons to Charge Separation / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.2.1. Overview: Harvesting Sunlight for Redox Chemistry / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.2.2. Light absorption and Light-Harvesting Antennas / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.2.3. Excitation Energy Transfer: Coherent Versus Incoherent or Wavelike Versus Hopping / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.2.4. Concluding Remarks and Future Perspectives for Artificial Photosynthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3. Electron Transfer Pathways / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3.1. Overview of the Primary Photochemistry and the Electron Transfer Chain / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3.2. Components Associated with P680 and P700 and the Entry into the Electron Transfer Chain / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3.3. Photosystem II: Function and Electron Transfer Pathway / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3.4. Photosystem I: Function and the Electron Transfer Pathways / Govindjee / Lars Olof Björn / Dmitriy Shevela
2.3.5. Intersystem Electron Transfer / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3.6. Water as a Source of Electrons for the Photosynthetic Electron Transfer Chain / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3.7. Can the Rate Limitation of O2 Production by Photosystem II Be Improved in Future Artificial Water-Splitting Systems? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.4. Photophosphorylation / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.4.1. Overview / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.4.2. Mechanism of ATP Synthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.4.3. Concluding Remarks / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.5. Carbon Dioxide to Organic Compounds / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.5.1. Overview of Carbon Dioxide Assimilation Systems in Oxygenic Organisms / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.5.2. C3 Pathway Versus C4 Pathway / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.5.3. C3 versus C4 Plants During Glacial/Interglacial Periods / Dmitriy Shevela / Lars Olof Björn / Govindjee
2.5.4. Concluding Remarks: Can the Natural Assimilation Pathways Be Improved to Help Solve the Energy Crisis? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.6. Evolution of Oxygenic Photosynthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.6.1. Overview / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.6.2. Two Photosystems for Oxygenic Photosynthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.6.3. Evolutionary Acclimation to Decreasing CO2 Availability / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7. Some Interesting Questions about Whole Plants / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.1. Overview / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.2. Why Are There Grana in Land Plants but Not in Algae? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.3. Why Are Leaves Darker on the Upper Side than on the Lower Side? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.4. How Much Do Different Layers in the Leaf Contribute to Photosynthesis? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.5. How Does Photosynthesis Interact with Climate-Atmosphere? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.6. Is There Photosynthesis Without CO2 Assimilation (N2 Fixation in Cyanobacteria, Light-Dependent N3- Assimilation in Land Plants)? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.7. How Can Animals Carry Out Photosynthesis? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.8. Perspectives for the Future / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.9. Summary / Dmitriy Shevela / Govindjee / Lars Olof Björn
Acknowledgments / Dmitriy Shevela / Govindjee / Lars Olof Björn
References / Dmitriy Shevela / Govindjee / Lars Olof Björn
3.1. Introduction / Gernot Renger
3.2. Overall Reaction Pattern of Photosynthesis and Respiration / Gernot Renger
3.3. Bioenergetic Limit of Solar Energy Exploitation: Water Splitting / Gernot Renger
3.4. Humankind's Dream of Using Water and Solar Radiation as "Clean Fuel" / Gernot Renger
3.5. Nature's Blueprint of Light-Induced Water Splitting / Gernot Renger
3.6. Types of Approaches in Performing Light-Driven H2 and O2 Formation from Water / Gernot Renger
3.6.1. Use of Photosynthetic Organisms / Gernot Renger
3.6.2. Hybrid Systems / Gernot Renger
3.6.3. Synthetic Systems / Gernot Renger
3.6.4. Oxidative Water Splitting into O2 and 4H+ / Gernot Renger
3.6.5. Synthetic WOCs / Gernot Renger
3.6.6. Light-Induced Water Splitting in Photosystem II / Gernot Renger
3.7. Light-Induced "Stable" Charge Separation / Gernot Renger
3.8. Energetics of Light-Induced Charge Separation / Gernot Renger
3.9. Oxidative Water Splitting: The Kok Cycle / Gernot Renger
3.10. Yz Oxidation by P680 + [" / Gernot Renger
3.11. Structure and Function of the WOC / Gernot Renger
3.11.1. Structure of the Catalytic Mn-Ca Cluster and its Coordination Sphere / Gernot Renger
3.11.2. Electronic Configuration and Nuclear Geometry in the Si States of the Catalytic Site / Gernot Renger
3.11.3. Kinetics of Oxidative Water Splitting in the WOC / Gernot Renger
3.11.4. Substrate/Product Pathways / Gernot Renger
3.11.5. Mechanism of Oxidative Water Splitting / Gernot Renger
3.12. Concluding Remarks / Gernot Renger
Acknowledgments / Gernot Renger
References / Gernot Renger
4.1. Introduction / Reza Razeghifard
4.2. Organic Pigment Assemblies on Electrodes / Reza Razeghifard
4.3. Photosystem Assemblies on Electrodes / Reza Razeghifard
4.4. Hydrogen Production by Photosystem I Hybrid Systems / Reza Razeghifard
4.5. Mimicking Water Oxidation with Manganese Complexes / Reza Razeghifard
4.6. Protein Design for Introducing Manganese Chemistry in Proteins / Reza Razeghifard
4.7. Protein Design and Photoactive Proteins with Chl Derivatives / Reza Razeghifard
4.8. Conclusion 133 / Reza Razeghifard
Acknowledgment / Reza Razeghifard
References / Reza Razeghifard
5.1. Ruthenium(II) / Dimitrios G. Giarikos
5.2. Ligand Influence on the Photochemistry of Ru(II) / Dimitrios G. Giarikos
5.3. Importance of Polypyridyl Ligands and Metal Ion for Tuning of MLCT Transitions / Dimitrios G. Giarikos
5.4. Electron Transfer of Ru(II) Complexes / Dimitrios G. Giarikos
5.5. Light-Harvesting Complexes Using Ru(II) Complexes / Dimitrios G. Giarikos
5.6. Ru(II) Artificial Photosystem Models for Photosystem II / Dimitrios G. Giarikos
5.7. Ru (II) Artificial Photosystem Models for Hydrogenase / Dimitrios G. Giarikos
5.8. Conclusion / Dimitrios G. Giarikos
References / Dimitrios G.
Giarikos
6.1. Introduction / Kanhaiya Kumar / Debabrata Das
6.2. Microbiology / Kanhaiya Kumar / Debabrata Das
6.3. Biochemistry of CO2 Fixation / Kanhaiya Kumar / Debabrata Das
6.3.1. CO2 Assimilation and Concentrating Mechanisms in Algae / Kanhaiya Kumar / Debabrata Das
6.3.2. Carbon-Concentrating Mechanisms (CCMs) / Kanhaiya Kumar / Debabrata Das
6.4. Parameters Affecting the CO2 Sequestration Process / Kanhaiya Kumar / Debabrata Das
6.4.1. Selection of Algal Species / Kanhaiya Kumar / Debabrata Das
6.4.2. Effect of Flue Gas Component / Kanhaiya Kumar / Debabrata Das
6.4.3. Effect of Physiochemical Parameters / Kanhaiya Kumar / Debabrata Das
6.4.4. Issues of Product Inhibition / Kanhaiya Kumar / Debabrata Das
6.5. Hydrogen Production by Cyanobacteria / Kanhaiya Kumar / Debabrata Das
6.5.1. Mechanism of Hydrogen Production / Kanhaiya Kumar / Debabrata Das
6.5.2. Mode of Hydrogen Production / Kanhaiya Kumar / Debabrata Das
6.5.3. Hydrogenase Versus Nitrogenase-Based Hydrogen Production / Kanhaiya Kumar / Debabrata Das
6.5.4. Factors Affecting Hydrogen Production in Cyanobacteria / Kanhaiya Kumar / Debabrata Das
6.5.5. Recent Advances in the Field of Hydrogen Production Using Cyanobacteria / Kanhaiya Kumar / Debabrata Das
6.6. Mechanisms of H2 Production in Green Algae / Kanhaiya Kumar / Debabrata Das
6.6.1. Light Fermentation / Kanhaiya Kumar / Debabrata Das
6.6.2. Dark Fermentation / Kanhaiya Kumar / Debabrata Das
6.6.3. Use of Chemicals / Kanhaiya Kumar / Debabrata Das.
Note continued: 6.6.4. Sulfur Deprivation / Kanhaiya Kumar / Debabrata Das
6.6.5. Control of Sulfur Quantity / Kanhaiya Kumar / Debabrata Das
6.6.6. Immobilization / Kanhaiya Kumar / Debabrata Das
6.6.7. Molecular Approach / Kanhaiya Kumar / Debabrata Das
6.6.8. Recent Trends in the Field of Hydrogen Production by Green Algae / Kanhaiya Kumar / Debabrata Das
6.7. Photobioreactors / Debabrata Das / Kanhaiya Kumar
6.7.1. Vertical Tubular Photobioreactor / Kanhaiya Kumar / Debabrata Das
6.7.2. Horizontal Tubular Photobioreactor / Kanhaiya Kumar / Debabrata Das
6.7.3. Helical Tubular Photobioreactor / Kanhaiya Kumar / Debabrata Das
6.7.4. Flat Panel Photobioreactor / Kanhaiya Kumar / Debabrata Das
6.7.5. Stirred Tank Photobioreactor / Kanhaiya Kumar / Debabrata Das
6.7.6. Hybrid Photobioreactor / Kanhaiya Kumar / Debabrata Das
6.8. Conclusion / Kanhaiya Kumar / Debabrata Das
Acknowledgments / Kanhaiya Kumar / Debabrata Das
References / Kanhaiya Kumar / Debabrata Das
7.1. Carbon Sequestration by Biomass / John W.K. Oliver / Shota Atsumi
7.2. Introduction to Cyanobacteria / John W.K. Oliver / Shota Atsumi
7.3. CO2 Uptake Efficiency of Cyanobacteria / John W.K. Oliver / Shota Atsumi
7.4. Mitigation of Costs Through Captured-Carbon Products / John W.K. Oliver / Shota Atsumi
7.5. Captured-Carbon Products from Engineered Cyanobacteria / John W.K. Oliver / Shota Atsumi
7.5.1. Isobutyraldehyde / John W.K. Oliver / Shota Atsumi
7.5.2. Isobutanol / John W.K. Oliver / Shota Atsumi
7.5.3. Fatty Acids / John W.K. Oliver / Shota Atsumi
7.5.4. Hydrocarbons / John W.K. Oliver / Shota Atsumi
7.5.5. 1-Butanol / John W.K. Oliver / Shota Atsumi
7.5.6. Isoprene / John W.K. Oliver / Shota Atsumi
7.5.7. Hydrogen / John W.K. Oliver / Shota Atsumi
7.5.8. Poly-3-hydroxybutyrate / John W.K. Oliver / Shota Atsumi
7.5.9. Indirect Production Technology / John W.K. Oliver / Shota Atsumi
7.6. Conclusion / John W.K. Oliver / Shota Atsumi
References / John W.K. Oliver / Shota Atsumi
8.1. Introduction / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata
8.2. Hydrogenase Engineering / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata
8.3. Metabolic Reprograming / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata
8.4. Light Capture Improvement / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata / Helena M. Amaro
Acknowledgments / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata
References / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata
9.1. Introduction / Archana Tiwari / Anjana Pandey
9.2. Advantages of Algae / Archana Tiwari / Anjana Pandey
9.3. Algal Strains and Biofuel Production / Archana Tiwari / Anjana Pandey
9.4. Algal Biofuels / Archana Tiwari / Anjana Pandey
9.4.1. Complete Cell Biomass / Archana Tiwari / Anjana Pandey
9.4.2. Lipids / Archana Tiwari / Anjana Pandey
9.4.3. Biodiesel / Archana Tiwari / Anjana Pandey
9.4.4. Advantages of Biodiesel from Algae Oil / Archana Tiwari / Anjana Pandey
9.4.5. Hydrocarbons / Archana Tiwari / Anjana Pandey
9.4.6. Hydrogen / Archana Tiwari / Anjana Pandey
9.4.7. Ethanol / Archana Tiwari / Anjana Pandey
9.4.8. Unique Products / Archana Tiwari / Anjana Pandey
9.5. Algal Cultivation for Biofuel Production / Archana Tiwari / Anjana Pandey
9.5.1. Carbon Dioxide Capture / Archana Tiwari / Anjana Pandey
9.5.2. Light / Archana Tiwari / Anjana Pandey
9.5.3. Nutrient Removal / Archana Tiwari / Anjana Pandey
9.5.4. Temperature / Archana Tiwari / Anjana Pandey
9.5.5. Biomass Harvesting / Archana Tiwari / Anjana Pandey
9.6. Photobioreactors Employed for Algal Biofuels / Archana Tiwari / Anjana Pandey
9.6.1. Tubular Photobioreactors / Archana Tiwari / Anjana Pandey
9.6.2. Flat Panel Photobioreactors / Archana Tiwari / Anjana Pandey
9.6.3. Offshore Membrane Enclosure for Growing Algae (OMEGA) / Archana Tiwari / Anjana Pandey
9.7. Recent Achievements in Algal Biofuels / Archana Tiwari / Anjana Pandey
9.8. Strategies for Enhancement of Algal Biofuel Production / Archana Tiwari / Anjana Pandey
9.8.1. Biorefinery: The High-Value Coproduct Strategy / Archana Tiwari / Anjana Pandey
9.8.2. Exploration of Growth Conditions and Nutrients / Archana Tiwari / Anjana Pandey
9.8.3. Design of Advanced Photobioreactors / Archana Tiwari / Anjana Pandey
9.8.4. Biotechnological Tools / Archana Tiwari / Anjana Pandey
9.8.5. Cost-Effective Technologies for Biomass Harvesting and Drying / Archana Tiwari / Anjana Pandey
9.9. Conclusion / Archana Tiwari / Anjana Pandey
References / Archana Tiwari / Anjana Pandey
10.1. Introduction / Ela Eroglu / Matthew Timmins / Steven M. Smith
10.2. Hydrogen Production by Algae / Ela Eroglu / Matthew Timmins / Steven M. Smith
10.3. Hydrogenase Enzyme / Ela Eroglu / Matthew Timmins / Steven M. Smith
10.4. Diversity of Hydrogen-Producing Algae / Ela Eroglu / Matthew Timmins / Steven M. Smith
10.5. Model Microalgae for H2 Production Studies: Chlamydomonas Reinhardtii / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6. Approaches for Enhancing Hydrogen Production / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6.1. Immobilization Processes / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6.2. Increasing the Resistance of Algal Cells to Stress Conditions / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6.3. Optimization of Bioreactor Conditions / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6.4. Integrated Photosynthetic Systems / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6.5. Genetic Engineering Approaches to Improve Photosynthetic Efficiency / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6.6. Metabolic Pathways of H2 Production / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.7. Conclusion / Ela Eroglu / Steven M. Smith / Matthew Timmins
References / Ela Eroglu / Steven M.
Smith / Matthew Timmins
11.1. Introduction / Niels Thomas Eriksen
11.2. Design of Photobioreactors / Niels Thomas Eriksen
11.3. Limitations to Productivity of Microalgal Cultures / Niels Thomas Eriksen
11.4. Actual Productivities of Microalgal Cultures / Niels Thomas Eriksen
11.5. Distribution of Light in Photobioreactors / Niels Thomas Eriksen
11.6. Gas Exchange in Photobioreactors / Niels Thomas Eriksen
11.7. Shear Stress in Photobioreactors / Niels Thomas Eriksen
11.8. Current Trends in Photobioreactor Development / Niels Thomas Eriksen
Acknowledgment / Niels Thomas Eriksen
References / Niels Thomas Eriksen
12.1. Introduction / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2. Relevant Issues for Design and Operation of Systems for Microalgal Cultures / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.1. Stoichiometry of Microalgal Growth / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.2. Microalgal Kinetics / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.3. Mass Balance / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.4. Energy Balance / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.5. Basic System Design of Microalgal Cultivation / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.6. Gas-Liquid Mass Transport / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.7. Mixing / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.3. Open Systems / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.3.1. Typologies / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.3.2. Mass Balances / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.3.3. Energy Balance / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.3.4. Gas-Liquid Mass Transfer / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.4. Closed Systems: Photobioreactors / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.4.1. Photobioreactor Typologies / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.4.2. Mass Balances / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.4.3. Energy Balance / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.4.4. Cultivation System Design / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.4.5. Gas-Liquid Mass Transfer / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.5. Novel Photobioreactor Configurations / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.6. Case Study: Intensive Production of Bio-Oil / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.6.1. Assessment of Maximum Productivity / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.6.2. Economic Assessment / Piero Salatino / Giuseppe Olivieri / Antonio Marzocchella
Acknowledgments / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
References / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
13.1. Introduction / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry.
Note continued: 13.2. Biofuel Supply, Demand, Production, and New Feedstocks / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry
13.3. Feasibility of Photosynthetic Fuel Production / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry
13.4. Biodiesel Production and Feedstocks / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry
13.5. Macroalgae Biofuel Feedstocks and Production / Navid R. Moheimani / Mark P. McHenry / Pouria Mehrani
13.6. Conclusion / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry
References / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry
14.1. Introduction / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.2. Technology Selection and Process Design / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.2.1. Design Basis / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.2.2. Strain Selection / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.2.3. Technology Selection / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.2.4. Process Design / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3. Economic Analysis / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.1. Capital Cost Estimates / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.2. Major Equipment Cost (MEC) / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.3. Fixed Capital Investments and Working Capital / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.4. Operating Cost Estimates / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.5. Cost of Ethanol Production / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.6. Overall Production Cost / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.7. Profitability / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.4. Reduction of Overall Production Cost / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.5. Conclusion / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
References / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
15.1. Introduction / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.2. Microalgae Cultivation Systems / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.2.1. Outdoor Open Systems / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.2.2. Outdoor Enclosed Systems / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.2.3. Fermenter-Type Reactors / Paul T. Anastas / Julie B. Zimmerman / Azadeh Kermanshahi-pour
15.3. Lipids / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.3.1. Polyunsaturated Fatty Acids / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.3.2. Carotenoids / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.4. Carbohydrates / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.4.1. Polysaccharides / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.5. Protein / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.5.1. Phycobiliproteins / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.6. Process Integration / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.7. Conclusion / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
References / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
16.1. Introduction / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.2. Nature of Lignocellulosic Biomass / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.2.1. Cellulose / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.2.2. Hemicellulose / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.2.3. Lignin / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.3. Feedstocks for Biomass Processing / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty
16.3.1. Agricultural Residues / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.3.2. Forest Residues / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.4. Production of Fermentable Sugars from Biomass / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty
16.4.1. Pretreatment of Biomass / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty
16.4.2. Enzymatic Hydrolysis of Cellulose / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / Zhanying Zhang / Ian M. O'Hara / William O.S. Doherty
16.4.3. Enzymatic Hydrolysis of Hemicellulose / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty
16.4.4. Enzymatic Hydrolysis of Pretreated Biomass by Industrial Cellulase Mixtures / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty
16.5. Thermochemical Conversion of Biomass to Fuels and Chemicals / Zhanying Zhang / Ian M. O'Hara / Philip A. Hobson / William O.S. Doherty / Sagadevan G. Mundree / Mark D. Harrison
16.5.1. Gasification / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / Zhanying Zhang / Ian M. O'Hara / William O.S. Doherty
16.5.2. Pyrolysis / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / Zhanying Zhang / Ian M. O'Hara / William O.S. Doherty
16.5.3. Liquefaction / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty
16.6. Fuels and Chemicals from Biomass / Ian M. O'Hara / Zhanying Zhang / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / William O.S. Doherty
16.7. Conclusion / Sagadevan G. Mundree / William O.S. Doherty / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison
References / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty.
1.2. Sun / Diego Castano
1.3. Light / Diego Castano
1.4. Thermodynamics / Diego Castano
1.5. Photovoltaics / Diego Castano
1.6. Photosynthesis / Diego Castano
References / Diego Castano
2.1. Introduction / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.1.1. Importance of Photosynthesis: Why Study Photosynthesis? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.1.2. Oxygenic Versus Anoxygenic Photosynthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.1.3. What Can We Learn from Natural Photosynthesis to Achieve Artificial Photosynthesis? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.1.4. Atomic Level Structures of Photosynthetic Systems / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.1.5. Scope of the Chapter / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.2. Path of Energy: From Photons to Charge Separation / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.2.1. Overview: Harvesting Sunlight for Redox Chemistry / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.2.2. Light absorption and Light-Harvesting Antennas / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.2.3. Excitation Energy Transfer: Coherent Versus Incoherent or Wavelike Versus Hopping / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.2.4. Concluding Remarks and Future Perspectives for Artificial Photosynthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3. Electron Transfer Pathways / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3.1. Overview of the Primary Photochemistry and the Electron Transfer Chain / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3.2. Components Associated with P680 and P700 and the Entry into the Electron Transfer Chain / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3.3. Photosystem II: Function and Electron Transfer Pathway / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3.4. Photosystem I: Function and the Electron Transfer Pathways / Govindjee / Lars Olof Björn / Dmitriy Shevela
2.3.5. Intersystem Electron Transfer / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3.6. Water as a Source of Electrons for the Photosynthetic Electron Transfer Chain / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.3.7. Can the Rate Limitation of O2 Production by Photosystem II Be Improved in Future Artificial Water-Splitting Systems? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.4. Photophosphorylation / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.4.1. Overview / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.4.2. Mechanism of ATP Synthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.4.3. Concluding Remarks / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.5. Carbon Dioxide to Organic Compounds / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.5.1. Overview of Carbon Dioxide Assimilation Systems in Oxygenic Organisms / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.5.2. C3 Pathway Versus C4 Pathway / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.5.3. C3 versus C4 Plants During Glacial/Interglacial Periods / Dmitriy Shevela / Lars Olof Björn / Govindjee
2.5.4. Concluding Remarks: Can the Natural Assimilation Pathways Be Improved to Help Solve the Energy Crisis? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.6. Evolution of Oxygenic Photosynthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.6.1. Overview / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.6.2. Two Photosystems for Oxygenic Photosynthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.6.3. Evolutionary Acclimation to Decreasing CO2 Availability / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7. Some Interesting Questions about Whole Plants / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.1. Overview / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.2. Why Are There Grana in Land Plants but Not in Algae? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.3. Why Are Leaves Darker on the Upper Side than on the Lower Side? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.4. How Much Do Different Layers in the Leaf Contribute to Photosynthesis? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.5. How Does Photosynthesis Interact with Climate-Atmosphere? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.6. Is There Photosynthesis Without CO2 Assimilation (N2 Fixation in Cyanobacteria, Light-Dependent N3- Assimilation in Land Plants)? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.7.7. How Can Animals Carry Out Photosynthesis? / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.8. Perspectives for the Future / Dmitriy Shevela / Govindjee / Lars Olof Björn
2.9. Summary / Dmitriy Shevela / Govindjee / Lars Olof Björn
Acknowledgments / Dmitriy Shevela / Govindjee / Lars Olof Björn
References / Dmitriy Shevela / Govindjee / Lars Olof Björn
3.1. Introduction / Gernot Renger
3.2. Overall Reaction Pattern of Photosynthesis and Respiration / Gernot Renger
3.3. Bioenergetic Limit of Solar Energy Exploitation: Water Splitting / Gernot Renger
3.4. Humankind's Dream of Using Water and Solar Radiation as "Clean Fuel" / Gernot Renger
3.5. Nature's Blueprint of Light-Induced Water Splitting / Gernot Renger
3.6. Types of Approaches in Performing Light-Driven H2 and O2 Formation from Water / Gernot Renger
3.6.1. Use of Photosynthetic Organisms / Gernot Renger
3.6.2. Hybrid Systems / Gernot Renger
3.6.3. Synthetic Systems / Gernot Renger
3.6.4. Oxidative Water Splitting into O2 and 4H+ / Gernot Renger
3.6.5. Synthetic WOCs / Gernot Renger
3.6.6. Light-Induced Water Splitting in Photosystem II / Gernot Renger
3.7. Light-Induced "Stable" Charge Separation / Gernot Renger
3.8. Energetics of Light-Induced Charge Separation / Gernot Renger
3.9. Oxidative Water Splitting: The Kok Cycle / Gernot Renger
3.10. Yz Oxidation by P680 + [" / Gernot Renger
3.11. Structure and Function of the WOC / Gernot Renger
3.11.1. Structure of the Catalytic Mn-Ca Cluster and its Coordination Sphere / Gernot Renger
3.11.2. Electronic Configuration and Nuclear Geometry in the Si States of the Catalytic Site / Gernot Renger
3.11.3. Kinetics of Oxidative Water Splitting in the WOC / Gernot Renger
3.11.4. Substrate/Product Pathways / Gernot Renger
3.11.5. Mechanism of Oxidative Water Splitting / Gernot Renger
3.12. Concluding Remarks / Gernot Renger
Acknowledgments / Gernot Renger
References / Gernot Renger
4.1. Introduction / Reza Razeghifard
4.2. Organic Pigment Assemblies on Electrodes / Reza Razeghifard
4.3. Photosystem Assemblies on Electrodes / Reza Razeghifard
4.4. Hydrogen Production by Photosystem I Hybrid Systems / Reza Razeghifard
4.5. Mimicking Water Oxidation with Manganese Complexes / Reza Razeghifard
4.6. Protein Design for Introducing Manganese Chemistry in Proteins / Reza Razeghifard
4.7. Protein Design and Photoactive Proteins with Chl Derivatives / Reza Razeghifard
4.8. Conclusion 133 / Reza Razeghifard
Acknowledgment / Reza Razeghifard
References / Reza Razeghifard
5.1. Ruthenium(II) / Dimitrios G. Giarikos
5.2. Ligand Influence on the Photochemistry of Ru(II) / Dimitrios G. Giarikos
5.3. Importance of Polypyridyl Ligands and Metal Ion for Tuning of MLCT Transitions / Dimitrios G. Giarikos
5.4. Electron Transfer of Ru(II) Complexes / Dimitrios G. Giarikos
5.5. Light-Harvesting Complexes Using Ru(II) Complexes / Dimitrios G. Giarikos
5.6. Ru(II) Artificial Photosystem Models for Photosystem II / Dimitrios G. Giarikos
5.7. Ru (II) Artificial Photosystem Models for Hydrogenase / Dimitrios G. Giarikos
5.8. Conclusion / Dimitrios G. Giarikos
References / Dimitrios G.
Giarikos
6.1. Introduction / Kanhaiya Kumar / Debabrata Das
6.2. Microbiology / Kanhaiya Kumar / Debabrata Das
6.3. Biochemistry of CO2 Fixation / Kanhaiya Kumar / Debabrata Das
6.3.1. CO2 Assimilation and Concentrating Mechanisms in Algae / Kanhaiya Kumar / Debabrata Das
6.3.2. Carbon-Concentrating Mechanisms (CCMs) / Kanhaiya Kumar / Debabrata Das
6.4. Parameters Affecting the CO2 Sequestration Process / Kanhaiya Kumar / Debabrata Das
6.4.1. Selection of Algal Species / Kanhaiya Kumar / Debabrata Das
6.4.2. Effect of Flue Gas Component / Kanhaiya Kumar / Debabrata Das
6.4.3. Effect of Physiochemical Parameters / Kanhaiya Kumar / Debabrata Das
6.4.4. Issues of Product Inhibition / Kanhaiya Kumar / Debabrata Das
6.5. Hydrogen Production by Cyanobacteria / Kanhaiya Kumar / Debabrata Das
6.5.1. Mechanism of Hydrogen Production / Kanhaiya Kumar / Debabrata Das
6.5.2. Mode of Hydrogen Production / Kanhaiya Kumar / Debabrata Das
6.5.3. Hydrogenase Versus Nitrogenase-Based Hydrogen Production / Kanhaiya Kumar / Debabrata Das
6.5.4. Factors Affecting Hydrogen Production in Cyanobacteria / Kanhaiya Kumar / Debabrata Das
6.5.5. Recent Advances in the Field of Hydrogen Production Using Cyanobacteria / Kanhaiya Kumar / Debabrata Das
6.6. Mechanisms of H2 Production in Green Algae / Kanhaiya Kumar / Debabrata Das
6.6.1. Light Fermentation / Kanhaiya Kumar / Debabrata Das
6.6.2. Dark Fermentation / Kanhaiya Kumar / Debabrata Das
6.6.3. Use of Chemicals / Kanhaiya Kumar / Debabrata Das.
Note continued: 6.6.4. Sulfur Deprivation / Kanhaiya Kumar / Debabrata Das
6.6.5. Control of Sulfur Quantity / Kanhaiya Kumar / Debabrata Das
6.6.6. Immobilization / Kanhaiya Kumar / Debabrata Das
6.6.7. Molecular Approach / Kanhaiya Kumar / Debabrata Das
6.6.8. Recent Trends in the Field of Hydrogen Production by Green Algae / Kanhaiya Kumar / Debabrata Das
6.7. Photobioreactors / Debabrata Das / Kanhaiya Kumar
6.7.1. Vertical Tubular Photobioreactor / Kanhaiya Kumar / Debabrata Das
6.7.2. Horizontal Tubular Photobioreactor / Kanhaiya Kumar / Debabrata Das
6.7.3. Helical Tubular Photobioreactor / Kanhaiya Kumar / Debabrata Das
6.7.4. Flat Panel Photobioreactor / Kanhaiya Kumar / Debabrata Das
6.7.5. Stirred Tank Photobioreactor / Kanhaiya Kumar / Debabrata Das
6.7.6. Hybrid Photobioreactor / Kanhaiya Kumar / Debabrata Das
6.8. Conclusion / Kanhaiya Kumar / Debabrata Das
Acknowledgments / Kanhaiya Kumar / Debabrata Das
References / Kanhaiya Kumar / Debabrata Das
7.1. Carbon Sequestration by Biomass / John W.K. Oliver / Shota Atsumi
7.2. Introduction to Cyanobacteria / John W.K. Oliver / Shota Atsumi
7.3. CO2 Uptake Efficiency of Cyanobacteria / John W.K. Oliver / Shota Atsumi
7.4. Mitigation of Costs Through Captured-Carbon Products / John W.K. Oliver / Shota Atsumi
7.5. Captured-Carbon Products from Engineered Cyanobacteria / John W.K. Oliver / Shota Atsumi
7.5.1. Isobutyraldehyde / John W.K. Oliver / Shota Atsumi
7.5.2. Isobutanol / John W.K. Oliver / Shota Atsumi
7.5.3. Fatty Acids / John W.K. Oliver / Shota Atsumi
7.5.4. Hydrocarbons / John W.K. Oliver / Shota Atsumi
7.5.5. 1-Butanol / John W.K. Oliver / Shota Atsumi
7.5.6. Isoprene / John W.K. Oliver / Shota Atsumi
7.5.7. Hydrogen / John W.K. Oliver / Shota Atsumi
7.5.8. Poly-3-hydroxybutyrate / John W.K. Oliver / Shota Atsumi
7.5.9. Indirect Production Technology / John W.K. Oliver / Shota Atsumi
7.6. Conclusion / John W.K. Oliver / Shota Atsumi
References / John W.K. Oliver / Shota Atsumi
8.1. Introduction / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata
8.2. Hydrogenase Engineering / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata
8.3. Metabolic Reprograming / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata
8.4. Light Capture Improvement / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata / Helena M. Amaro
Acknowledgments / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata
References / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata
9.1. Introduction / Archana Tiwari / Anjana Pandey
9.2. Advantages of Algae / Archana Tiwari / Anjana Pandey
9.3. Algal Strains and Biofuel Production / Archana Tiwari / Anjana Pandey
9.4. Algal Biofuels / Archana Tiwari / Anjana Pandey
9.4.1. Complete Cell Biomass / Archana Tiwari / Anjana Pandey
9.4.2. Lipids / Archana Tiwari / Anjana Pandey
9.4.3. Biodiesel / Archana Tiwari / Anjana Pandey
9.4.4. Advantages of Biodiesel from Algae Oil / Archana Tiwari / Anjana Pandey
9.4.5. Hydrocarbons / Archana Tiwari / Anjana Pandey
9.4.6. Hydrogen / Archana Tiwari / Anjana Pandey
9.4.7. Ethanol / Archana Tiwari / Anjana Pandey
9.4.8. Unique Products / Archana Tiwari / Anjana Pandey
9.5. Algal Cultivation for Biofuel Production / Archana Tiwari / Anjana Pandey
9.5.1. Carbon Dioxide Capture / Archana Tiwari / Anjana Pandey
9.5.2. Light / Archana Tiwari / Anjana Pandey
9.5.3. Nutrient Removal / Archana Tiwari / Anjana Pandey
9.5.4. Temperature / Archana Tiwari / Anjana Pandey
9.5.5. Biomass Harvesting / Archana Tiwari / Anjana Pandey
9.6. Photobioreactors Employed for Algal Biofuels / Archana Tiwari / Anjana Pandey
9.6.1. Tubular Photobioreactors / Archana Tiwari / Anjana Pandey
9.6.2. Flat Panel Photobioreactors / Archana Tiwari / Anjana Pandey
9.6.3. Offshore Membrane Enclosure for Growing Algae (OMEGA) / Archana Tiwari / Anjana Pandey
9.7. Recent Achievements in Algal Biofuels / Archana Tiwari / Anjana Pandey
9.8. Strategies for Enhancement of Algal Biofuel Production / Archana Tiwari / Anjana Pandey
9.8.1. Biorefinery: The High-Value Coproduct Strategy / Archana Tiwari / Anjana Pandey
9.8.2. Exploration of Growth Conditions and Nutrients / Archana Tiwari / Anjana Pandey
9.8.3. Design of Advanced Photobioreactors / Archana Tiwari / Anjana Pandey
9.8.4. Biotechnological Tools / Archana Tiwari / Anjana Pandey
9.8.5. Cost-Effective Technologies for Biomass Harvesting and Drying / Archana Tiwari / Anjana Pandey
9.9. Conclusion / Archana Tiwari / Anjana Pandey
References / Archana Tiwari / Anjana Pandey
10.1. Introduction / Ela Eroglu / Matthew Timmins / Steven M. Smith
10.2. Hydrogen Production by Algae / Ela Eroglu / Matthew Timmins / Steven M. Smith
10.3. Hydrogenase Enzyme / Ela Eroglu / Matthew Timmins / Steven M. Smith
10.4. Diversity of Hydrogen-Producing Algae / Ela Eroglu / Matthew Timmins / Steven M. Smith
10.5. Model Microalgae for H2 Production Studies: Chlamydomonas Reinhardtii / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6. Approaches for Enhancing Hydrogen Production / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6.1. Immobilization Processes / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6.2. Increasing the Resistance of Algal Cells to Stress Conditions / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6.3. Optimization of Bioreactor Conditions / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6.4. Integrated Photosynthetic Systems / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6.5. Genetic Engineering Approaches to Improve Photosynthetic Efficiency / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.6.6. Metabolic Pathways of H2 Production / Ela Eroglu / Steven M. Smith / Matthew Timmins
10.7. Conclusion / Ela Eroglu / Steven M. Smith / Matthew Timmins
References / Ela Eroglu / Steven M.
Smith / Matthew Timmins
11.1. Introduction / Niels Thomas Eriksen
11.2. Design of Photobioreactors / Niels Thomas Eriksen
11.3. Limitations to Productivity of Microalgal Cultures / Niels Thomas Eriksen
11.4. Actual Productivities of Microalgal Cultures / Niels Thomas Eriksen
11.5. Distribution of Light in Photobioreactors / Niels Thomas Eriksen
11.6. Gas Exchange in Photobioreactors / Niels Thomas Eriksen
11.7. Shear Stress in Photobioreactors / Niels Thomas Eriksen
11.8. Current Trends in Photobioreactor Development / Niels Thomas Eriksen
Acknowledgment / Niels Thomas Eriksen
References / Niels Thomas Eriksen
12.1. Introduction / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2. Relevant Issues for Design and Operation of Systems for Microalgal Cultures / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.1. Stoichiometry of Microalgal Growth / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.2. Microalgal Kinetics / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.3. Mass Balance / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.4. Energy Balance / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.5. Basic System Design of Microalgal Cultivation / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.6. Gas-Liquid Mass Transport / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.2.7. Mixing / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.3. Open Systems / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.3.1. Typologies / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.3.2. Mass Balances / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.3.3. Energy Balance / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.3.4. Gas-Liquid Mass Transfer / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.4. Closed Systems: Photobioreactors / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.4.1. Photobioreactor Typologies / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.4.2. Mass Balances / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.4.3. Energy Balance / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.4.4. Cultivation System Design / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.4.5. Gas-Liquid Mass Transfer / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.5. Novel Photobioreactor Configurations / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.6. Case Study: Intensive Production of Bio-Oil / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.6.1. Assessment of Maximum Productivity / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
12.6.2. Economic Assessment / Piero Salatino / Giuseppe Olivieri / Antonio Marzocchella
Acknowledgments / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
References / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino
13.1. Introduction / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry.
Note continued: 13.2. Biofuel Supply, Demand, Production, and New Feedstocks / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry
13.3. Feasibility of Photosynthetic Fuel Production / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry
13.4. Biodiesel Production and Feedstocks / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry
13.5. Macroalgae Biofuel Feedstocks and Production / Navid R. Moheimani / Mark P. McHenry / Pouria Mehrani
13.6. Conclusion / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry
References / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry
14.1. Introduction / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.2. Technology Selection and Process Design / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.2.1. Design Basis / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.2.2. Strain Selection / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.2.3. Technology Selection / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.2.4. Process Design / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3. Economic Analysis / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.1. Capital Cost Estimates / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.2. Major Equipment Cost (MEC) / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.3. Fixed Capital Investments and Working Capital / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.4. Operating Cost Estimates / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.5. Cost of Ethanol Production / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.6. Overall Production Cost / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.3.7. Profitability / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.4. Reduction of Overall Production Cost / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
14.5. Conclusion / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
References / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu
15.1. Introduction / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.2. Microalgae Cultivation Systems / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.2.1. Outdoor Open Systems / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.2.2. Outdoor Enclosed Systems / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.2.3. Fermenter-Type Reactors / Paul T. Anastas / Julie B. Zimmerman / Azadeh Kermanshahi-pour
15.3. Lipids / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.3.1. Polyunsaturated Fatty Acids / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.3.2. Carotenoids / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.4. Carbohydrates / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.4.1. Polysaccharides / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.5. Protein / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.5.1. Phycobiliproteins / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.6. Process Integration / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
15.7. Conclusion / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
References / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman
16.1. Introduction / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.2. Nature of Lignocellulosic Biomass / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.2.1. Cellulose / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.2.2. Hemicellulose / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.2.3. Lignin / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.3. Feedstocks for Biomass Processing / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty
16.3.1. Agricultural Residues / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.3.2. Forest Residues / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson
16.4. Production of Fermentable Sugars from Biomass / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty
16.4.1. Pretreatment of Biomass / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty
16.4.2. Enzymatic Hydrolysis of Cellulose / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / Zhanying Zhang / Ian M. O'Hara / William O.S. Doherty
16.4.3. Enzymatic Hydrolysis of Hemicellulose / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty
16.4.4. Enzymatic Hydrolysis of Pretreated Biomass by Industrial Cellulase Mixtures / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty
16.5. Thermochemical Conversion of Biomass to Fuels and Chemicals / Zhanying Zhang / Ian M. O'Hara / Philip A. Hobson / William O.S. Doherty / Sagadevan G. Mundree / Mark D. Harrison
16.5.1. Gasification / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / Zhanying Zhang / Ian M. O'Hara / William O.S. Doherty
16.5.2. Pyrolysis / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / Zhanying Zhang / Ian M. O'Hara / William O.S. Doherty
16.5.3. Liquefaction / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty
16.6. Fuels and Chemicals from Biomass / Ian M. O'Hara / Zhanying Zhang / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / William O.S. Doherty
16.7. Conclusion / Sagadevan G. Mundree / William O.S. Doherty / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison
References / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty.
Source of Description
Print version record and CIP data provided by publisher.
Available in Other Form
Print version: Razeghifard, Reza, 1964- editor of compilation. Natural and artificial photosynthesis. Hoboken, New Jersey : John Wiley and Sons, Inc., [2013]
Linked Resources
Record Appears in