How to study for a mathematics degree / Lara Alcock.
2013
QA11.2 .A43 2012eb
Formats
Format | |
---|---|
BibTeX | |
MARCXML | |
TextMARC | |
MARC | |
DublinCore | |
EndNote | |
NLM | |
RefWorks | |
RIS |
Linked e-resources
Details
Title
How to study for a mathematics degree / Lara Alcock.
Author
ISBN
9780191637360 (electronic bk.)
019163736X (electronic bk.)
9781283713450
1283713454
0199661324
9780199661329
9780199661329 (pbk.)
019163736X (electronic bk.)
9781283713450
1283713454
0199661324
9780199661329
9780199661329 (pbk.)
Imprint
Oxford : Oxford University Press, 2013.
Language
English
Description
1 online resource (xvi, 272 pages)
Call Number
QA11.2 .A43 2012eb
System Control No.
(OCoLC)815395639
Summary
Every year, thousands of students go to university to study mathematics (single honours or combined with another subject). Many of these students are extremely intelligent and hardworking, but even the best will, at some point, struggle with the demands of making the transition to advanced mathematics. Some have difficulty adjusting to independent study and to learning from lectures. Other struggles, however, are more fundamental: the mathematics shifts in focus from calculation toproof, so students are expected to interact with it in different ways. These changes need not be mysterious - math.
Note
Title from PDF title page (viewed on Oct. 30, 2012).
Bibliography, etc. Note
Includes bibliographical references (pages 248-262) and index.
Formatted Contents Note
Cover; Contents; Symbols; Introduction; Part 1 Mathematics; 1 Calculation Procedures; 1.1 Calculation at school and at university; 1.2 Decisions about and within procedures; 1.3 Learning from few (or no) examples; 1.4 Generating your own exercises; 1.5 Writing out calculations; 1.6 Checking for errors; 1.7 Mathematics is not just procedures; 2 Abstract Objects; 2.1 Numbers as abstract objects; 2.2 Functions as abstract objects; 2.3 What kind of object is that, really?; 2.4 Objects as the results of procedures; 2.5 Hierarchical organization of objects; 2.6 Turning processes into objects.
2.7 New objects: relations and binary operations2.8 New objects: symmetries; 3 Definitions; 3.1 Axioms, definitions and theorems; 3.2 What are axioms?; 3.3 What are definitions?; 3.4 What are theorems?; 3.5 Understanding definitions: even numbers; 3.6 Understanding definitions: increasing functions; 3.7 Understanding definitions: commutativity; 3.8 Understanding definitions: open sets; 3.9 Understanding definitions: limits; 3.10 Definitions and intuition; 4 Theorems; 4.1 Theorems and logical necessity; 4.2 A simple theorem about integers; 4.3 A theorem about functions and derivatives.
4.4 A theorem with less familiar objects4.5 Logical language: 'if '; 4.6 Logical language: everyday uses of 'if '; 4.7 Logical language: quantifiers; 4.8 Logical language: multiple quantifiers; 4.9 Theorem rephrasing; 4.10 Understanding: logical form and meaning; 5 Proof; 5.1 Proofs in school mathematics; 5.2 Proving that a definition is satisfied; 5.3 Proving general statements; 5.4 Proving general theorems using definitions; 5.5 Definitions and other representations; 5.6 Proofs, logical deductions and objects; 5.7 Proving obvious things.
5.8 Believing counterintuitive things: the harmonic series5.9 Believing counterintuitive things: Earth and rope; 5.10 Will my whole degree be proofs?; 6 Proof Types and Tricks; 6.1 General proving strategies; 6.2 Direct proof; 6.3 Proof by contradiction; 6.4 Proof by induction; 6.5 Uniqueness proofs; 6.6 Adding and subtracting the same thing; 6.7 Trying things out; 6.8 'I would never have thought of that'; 7 Reading Mathematics; 7.1 Independent reading; 7.2 Reading your lecture notes; 7.3 Reading for understanding; 7.4 Reading for synthesis; 7.5 Using summaries for revision.
7.6 Reading for memory7.7 Using diagrams for memory; 7.8 Reading proofs for memory; 8 Writing Mathematics; 8.1 Recognizing good writing; 8.2 Why should a student write well?; 8.3 Writing a clear argument; 8.4 Using notation correctly; 8.5 Arrows and brackets; 8.6 Exceptions and mistakes; 8.7 Separating out the task of writing; Part 2 Study Skills; 9 Lectures; 9.1 What are lectures like?; 9.2 What are lecturers like?; 9.3 Making lectures work for you; 9.4 Tackling common problems; 9.5 Learning in lectures; 9.6 Courtesy in lectures; 9.7 Feedback on lectures; 10 Other People.
2.7 New objects: relations and binary operations2.8 New objects: symmetries; 3 Definitions; 3.1 Axioms, definitions and theorems; 3.2 What are axioms?; 3.3 What are definitions?; 3.4 What are theorems?; 3.5 Understanding definitions: even numbers; 3.6 Understanding definitions: increasing functions; 3.7 Understanding definitions: commutativity; 3.8 Understanding definitions: open sets; 3.9 Understanding definitions: limits; 3.10 Definitions and intuition; 4 Theorems; 4.1 Theorems and logical necessity; 4.2 A simple theorem about integers; 4.3 A theorem about functions and derivatives.
4.4 A theorem with less familiar objects4.5 Logical language: 'if '; 4.6 Logical language: everyday uses of 'if '; 4.7 Logical language: quantifiers; 4.8 Logical language: multiple quantifiers; 4.9 Theorem rephrasing; 4.10 Understanding: logical form and meaning; 5 Proof; 5.1 Proofs in school mathematics; 5.2 Proving that a definition is satisfied; 5.3 Proving general statements; 5.4 Proving general theorems using definitions; 5.5 Definitions and other representations; 5.6 Proofs, logical deductions and objects; 5.7 Proving obvious things.
5.8 Believing counterintuitive things: the harmonic series5.9 Believing counterintuitive things: Earth and rope; 5.10 Will my whole degree be proofs?; 6 Proof Types and Tricks; 6.1 General proving strategies; 6.2 Direct proof; 6.3 Proof by contradiction; 6.4 Proof by induction; 6.5 Uniqueness proofs; 6.6 Adding and subtracting the same thing; 6.7 Trying things out; 6.8 'I would never have thought of that'; 7 Reading Mathematics; 7.1 Independent reading; 7.2 Reading your lecture notes; 7.3 Reading for understanding; 7.4 Reading for synthesis; 7.5 Using summaries for revision.
7.6 Reading for memory7.7 Using diagrams for memory; 7.8 Reading proofs for memory; 8 Writing Mathematics; 8.1 Recognizing good writing; 8.2 Why should a student write well?; 8.3 Writing a clear argument; 8.4 Using notation correctly; 8.5 Arrows and brackets; 8.6 Exceptions and mistakes; 8.7 Separating out the task of writing; Part 2 Study Skills; 9 Lectures; 9.1 What are lectures like?; 9.2 What are lecturers like?; 9.3 Making lectures work for you; 9.4 Tackling common problems; 9.5 Learning in lectures; 9.6 Courtesy in lectures; 9.7 Feedback on lectures; 10 Other People.
Access Note
Limited Users and Download Restrictions may Apply, VLEbooks 1 User Licence. Available using University of Exeter Username and Password.
Available in Other Form
Print version:
Linked Resources
Record Appears in